Магазин «Все для сварщика»
Корзина пустая

Виды сварочных источников питания и установок

Трансформаторы (источники питания переменным током).

Это специальные виды однофазных и трехфазных трансформаторов, а также электромашинные генераторы повышенной частоты (400—500 Гц). Существуют два основных принципа построения сварочных трансформаторов: с нормальным магнитным рассеянием и дополнительным индуктивным сопротивлением — дросселем и с искусственно увеличенным магнитным рассеянием.
Трансформаторы первой группы бывают двух основных типов: а) в двухкорпусном исполнении с отдельным дросселем (рис.1 а) между обмотками трансформатора 1 и дросселя 2 имеется только электрическая связь, а величина сварочного тока изменяется путем изменения воздушного зазора 3 в магпитопроводе дросселя; б) в однокорпусном исполнении (рис. 1, б) между обмотками трансформатора и дросселя существует как электрическая, так и магнитная связь; трансформаторы этого типа экономичнее и удобнее в эксплуатации. 
В трансформаторах второй группы (в однокорпусном исполнении) необходимые внешние характеристики создаются за счет изменения реактивного сопротивления трансформатора. Это достигается за счет принудительного изменения расстояния между первичной 4 (рис. 1, в) и вторичной 5 обмотками млн за счет изменения величины рассеяния магнитосиловых линий при помощи магнитного подвижного шунта 6 (рис.1, г), вводимого в зазор между удаленными друг от друга обмотками 4 и 5. На рис. 1, д показана схема трансформатора, в котором наряду с основными обмотками 4 и 5, размещенными на различных стержнях магнитопровода, имеется дополнительная обмотка 7, охва¬тывающая обе основные обмотки. Включая дополнительную обмотку 7 встречно или согласно основным, изменяют сопротивление трансформатора и его характеристику. Выпускаются транс форматоры с шунтом 8 (рис. 1, е), магнитное устройство которых регулируется подмагничивающей катушкой 9, а также трансформаторы с магнитной коммутацией потоков (рис. 1, ж). В этом случае часть витков вторичной обмотки 5 вынесена в верхнее окно, что позволяет регулировать и наклон характеристик. 

Сварочные выпрямители (источники питания постоянным током).

Эти источники состоят из трансформатора и блока вентилей. Иногда в комплект выпрямителя входит также дроссель, включенный в цепь постоянного тока для получения нормального переноса электродного металла в дуге. 



В основном применяют многофазные выпрямители. В выпрямителях с полого-падающей характеристикой используют трансформаторы с малым сопротивлением короткого замыкания. Для получения падающей характеристики необходимы трансформаторы с дросселями или с развитым магнитным рассеянием, аналогичные ранее описанным. В современных выпрямителях применяют преимущественно кремниевые вентили, а в ряде случаев селеновые. Селеновые выпрямители обладают большой перегрузочной способностью и необходимы для источников с падающей или жесткой характеристиками. 
Кремниевые выпрямители применяют главным образом в источниках с падающими характеристиками. Они отличаются малым размером и, как следствие, очень напряженным тепловым режимом работы. 
Схема выпрямителя с трехфазным трансформатором и выпрямительным блоком, собранным по трехфазной мостовой схеме, показана на рис. 2. При этой схеме каждый выпрямительный элемент проводит ток в прямом направлении в течение 1/3 периода, что исключает резкие пульсации тока. Применяют выпрямители шестифазные, а также выпрямители, в которых внешняя характеристика создается полупроводниковыми приборами. Современные выпрямители часто содержат схемы автоматического регулирования и стабилизации напряжения при наличии внешних возмущений . 

Сварочные генераторы.

Это специальные виды электрических машин постоянного тока. Заданные внешние характеристики могут быть получены различными путями. 
1. Применением генератора постоянного тока с жесткой характеристикой и последовательным включением в сварочную цепь балластных сопротивлений. Такая схема используется в многопостовых генераторах. 
2. Применением генераторов с магнитным потоком, изменяющимся в зависимости от изменения величины сварочного тока. Эти генераторы могут быть разделены на три основные группы: 
а) с обмоткой независимого возбуждения и размагничивающей последовательной обмоткой; ампер-витки последней направлены встречно ампер-виткам обмотки независимого возбуждения;
б) с самовозбуждением; ампер-витки параллельной намагничивающей и последовательной размагничивающей обмоток направлены встречно; 
в) с самовозбуждением; генераторы имеют намагничи вающую обмотку возбуждения и используют размагничивающее действие реакции якоря. 
Выпускаются генераторы с самовозбуждением, схема которых показана на рис. 1. Намагничивающая обмотка питается от третьей, дополнительной щетки с. Благодаря поперечной реакции якоря напряжение между третьей и основной щетками мало зависит от тока нагрузки. Режим сварки регулируют при помощи реостата Р в цепи намагничивающей обмотки возбуждения НО, который определяет напряжение холостого хода генератора. При коротком замыкании напряжение дуги равно нулю, а электродвижущая сила генератора падает до величины, уравновешивающей падение напряжения в сопротивлении сва¬рочной цепи. Для расширения пределов регулирования от раз¬магничивающей обмотки РО сделан дополнительный вывод. 
Однопостовые генераторы для питания установок полуавтоматической или автоматической сварки должны иметь пологопадающую или жесткую характеристику. Для получения широкого диапазона регулирования они имеют независимое питание обмотки возбуждения. 
Универсальный сварочный генератор позволяет получать внешние характеристики различной формы (падающей или жесткой) и регулировать динамические свойства (рис. 2). Включая последовательную обмотку СО встречно или согласно и изменяя число витков в обмотке, можно получить жесткую или падающую харак¬теристику. Соответствующие динамические свойства генератора достигаются включением витков регулируемого дросселя Д. 
По типу привода вращающиеся источники питания разделяются на преобразователи, снабженные электродвигателями, и на агрегаты, снабженные дизельными или бензиновыми двигателями внутреннего сгорания . 

Сварочный инвертор

- это последнее слово техники в сварочном производстве. Инвертор является блоком питания и гениратором сварочного тока, и имеет габариты в 10 раз меньше габаритов выпрямителей и трансформаторов с темиже характеристиками, а главное иинверторный аппарат имеет КПД около 90%.




Как показано на рисунке выше, основным принципом работы сварочного инвертора является многократное поэтапное преобразование электрической энергии. Можно выделить основные этапы преобразования тока в сварочном инверторе: 

• выпрямление переменного сетевого напряжения частотой 50 Гц в первичном выпрямителе, собранном из силовых диодов по мостовой схеме; 

• преобразование полученного выпрямленного напряжения с повышенными пульсациями в переменное напряжение высокой частоты с помощью инвертирующего преобразователя; 

• понижение переменного напряжения высокой частоты импульсным высокочастотным трансформатором до значения, соответствующего напряжению сварки, с формированием необходимого вида вольтамперной характеристики; 

• преобразование вторичным выпрямителем переменного напряжения высокой частоты, имеющего величину сварочного напряжения, в постоянное напряжение со сглаживанием пульсаций тока. 

Сварочный полуавтомат

Сварочный полуавтомат представляет собой специализированную сварочную установку для механизированной сварки плавящимся электродом (проволокой) в защитном газе. 
В качестве защитной газовой среды сварочный полуавтомат использует чистый углекислый газ или его смеси с аргоном, которые подаются из баллонов или централизованных систем газоснабжения. 
С помощью сварочного полуавтомата можно производить высококачественную сварку любых сталей (низкоуглеродистых, легированных, нержавеющих) и алюминиевых сплавов. Некоторые сварочные полуавтоматы имеют возможность производить пайку оцинкованных сталей специальной проволокой в среде аргона (так называемая технология MIG-пайки). 
Сварочный полуавтомат состоит из сварочного источника питания, блока подачи сварочной проволоки, системы управления, специальной сварочной горелки и комплекта соединительных кабелей и шлангов. В качестве источника питания в сварочном полуавтомате может быть использован обычный сварочный выпрямитель или сварочный инвертор. Применение в сварочных полуавтоматах инверторных источников питания значительно повышает качество сварки и расширяет спектр свариваемых материалов. Наиболее высокое качество сварки возможно при использовании инверторных источников питания с импульсным режимом. 




Установка для дуговой механизированной сварки в СО2: 1 - изделие; 2 - кнопка "Пуск"-"Стоп"; 3 - горелка; 4 - гибкий шланг; 5 - механизм подачи электродной проволоки; 6 - пульт управления; 7 - катушка; 8 - кабель цепей управления; 9 - блок управления по луавтоматом; 10 - шланг для подачи защитного газа; 11 - газовый редуктор; 12 - подогреватель СО2; 13 - баллон с СО2; 14 - сварочный выпрямитель. 
Блок подачи проволоки сварочного полуавтомата служит для размещения, правки и подачи сварочной проволоки в сварочную горелку. Сварочная проволока для сварочных полуавтоматов поставляется намотанной на стандартные пластиковые катушки диаметром 200 мм (масса проволоки 5 кг) и диаметром 300 мм (масса проволоки 15 кг) или проволочные каркасы (масса проволоки 15 кг). В сварочных полуавтоматах используется сварочная проволока диаметрами 0,8 мм, 1,0 мм, 1,2 мм и 1,6 мм. 
Система управления современного сварочного полуавтомата обеспечивает формирование необходимого режима сварки и устойчивость параметров сварки. Управление таким сварочным полуавтоматом построено на системе обратных связей. Синергетические системы управления сварочных полуавтоматов позволяют выполнять автоматическое формирование режимов сварки в зависимости от выбранных параметров - типа и толщины свариваемого материала, диаметра сварочной проволоки, состава защитного газа. Система управления сварочного полуавтомата может иметь функцию запоминания выбранного режима сварки для последующего его использования. 

Установка для автоматической сварки плавящимся электродом

Сварочным аппаратом называют комплекс механизмов и электрических приборов, необходимых для механизации процесса выполнения сварного соединения. На рис.6 показан один из таких аппаратов. Он состоит из сварочной головки 7, ходового механизма 2, системы 3 для подачи флюса и отсоса его нерасплавляющейся части, механизма 14 перемещения головки по вертикали и катушки о. Основным узлом аппарата является сварочная головка. Она содержит приводной механизм 6 с двигателем 7 и системой роликов, токоподводящий мундштук 15 с устройствами 12 для защиты дуги флюсом или газом. Проволока, зажатая между подающим 8 и прижимным 9 роликами, сматывается с катушки 5 и проталкивается в зону сварки через правильный механизм 11 и токоподводящий мундштук 15. Для корректировки положения электрода относительно стыка служат поперечный 13, вертикальный и другие корректоры. Для направления электрода по стыку служит световой указатель 10. 
Аппараты, содержащие кроме сварочной головки механизм движения по рельсовому пути 4, расположенному вдоль свариваемых кромок, принято называть самоходными. Самоходные аппараты, которые в процессе сварки движутся непосредственно по свариваемому изделию, копируя его, называют сварочными тракторами . 


Существует множество универсальных и специализированных аппаратов для дуговой сварки. Независимо от назначения они содержат в той или иной компоновке все или некоторые из перечисленных выше элементов и устройств. Ниже рассмотрены принцип их действия и характерные особенности. 


Сварочная головка. Основные функции сварочной головки — подача в зону дуги электродной проволоки и подвод к ней сварочного напряжения, поддержание в процессе сварки неизменными силы тока и напряжения дуги или изменение их по заданной программе. Кроме того, сварочная головка обеспечивает возможность настройки указанных параметров режима. Рассмотрим основные механизмы сварочных головок. 
Механизм подачи электрода — основной узел сварочной головки — состоит, как правило, из системы подающих проволоку роликов и привода. Один из роликов 8, связанный с выходным валом привода, является ведущим, другой 9, прижимающий под действием пружины проволоку к ролику 8, — прижимным.
Современные механизмы подачи содержат два или несколько подающих роликов различной конструкции и в различных сонечетаниях 

Машины для контактной сварки

Они бывают стационарными, передвижными и подвесными (сварочные клещи). По роду тока в сварочном контуре могут быть машины переменного или постоянного тока от импульса тока, выпрямленного в первичной цепи сварочного трансформатора или от разряда конденсатора. По способу сварки различают машины для точечной, рельефной, шовной и стыковой сварки. 
Любая машина для контактной сварки состоит из электрической и механической частей, пневмо- или гидросистемы и системы водяного охлаждения (рис. 7). 

Типовые схемы машин для контактной точечной (а), шовной (б) и стыковой (в) сварки: 1 - трансформатор; 2 - переключатель ступеней; 3 - вторичный сварочный контур; 4 - прерыватель первичной цепи; 5 - регулятор; 6 - привод сжатия; 7- привод зажатия деталей; 8 - привод осадки деталей; 9 - привод вращения роликов; 10- аппаратура подготовки; 11 - орган включения 
Электрическая часть включает в себя силовой сварочный трансформатор 1 с переключателем ступеней 2 его первичной обмотки, с помощью которого регулируют вторичное напряжение, вторичный сварочный контур 3 для подвода сварочного тока к деталям, прерыватель 4 первичной цепи сварочного трансформатора 1 и регулятор 5 цикла сварки, обеспечивающий заданную последовательность операций цикла и регулировку параметров режима сварки. 
Механическая часть состоит из привода сжатия 6 точечных и шовных машин, привода 7 зажатия деталей и привода 8 осадки деталей стыковых машин. Шовные машины снабжены приводом 9 вращения роликов. 
Пневмогидравлическая система состоит из аппаратуры 10 подготовки (фильтры, лубрикаторы, которые смазывают движущиеся части), регулирования (редукторы, манометры, дросселирующие клапаны) и подвода воздуха к приводу 6 (электропневматические клапаны, запорные вентили, краны, штуцера). 
Система водяного охлаждения включает в себя штуцера разводящей и приемной гребенок, охлаждаемые водой полости в трансформаторе 1 и вторичном контуре 3, разводящие шланги, запорные вентили и гидравлические реле, отключающие машину, если вода отсутствует или ее мало. 
Все машины снабжены органом включения 11. У точечных и шовных машин это ножная педаль с контактами, у стыковых - это комплект кнопок. С органов управления поступают команды на сжатие "С" электродов или зажатие "3" деталей, на включение "Т" и отключение "О" сварочного тока, на вращение "В" роликов, на включение "а" регулятора цикла сварки. Эти команды отрабатываются соответствующими блоками машины, обеспечивая выполнение операций цикла сварки. 
Кроме универсальных применяются специальные машины, приспособленные для сварки конкретных конструкций и типов размеров изделий. Примером могут служить машины для контактной точечной сварки кузовов автомобилей, встроенные в автоматические линии, машины для стыковой сварки оплавлением продольных швов труб в прокатном производстве.